Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The fraction of precipitation converted to stream discharge within a watershed, termed as runoff efficiency, may shift as climate changes. Runoff efficiency is known to be temperature‐sensitive in some watersheds, but temperature sensitivity is unquantified in many other watersheds. We identify regions where runoff efficiency is temperature‐sensitive using 942 watersheds, minimally influenced by anthropogenic activity, across the continental United States and Canada. Stepwise regression using historical discharge and climate records shows that runoff efficiency in 10 of 16 hydrologically similar hydro‐regions is sensitive to temperature, expanding the number of locations expected to experience temperature‐driven water stress, particularly in the North American continental interior. Runoff efficiency in all hydro‐regions demonstrates sensitivity to precipitation, but during wet years, runoff efficiency temporarily decreases, likely reflecting increasing groundwater storage. The temporary decrease in runoff efficiency is followed by an increase in the following year, likely due to the release of stored groundwater. This effect suggests changes in runoff efficiency help to stabilise watersheds, making it more difficult to both enter and leave drought as climate changes. The latter effect may partially explain observations of hydrologic drought persistence after meteorological drought ends. Understanding regional temperature sensitivity and the multiple‐year effect of precipitation will improve the ability to forecast runoff efficiency.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Predictions of how rapid warming will affect Arctic soil carbon (C) stocks are limited by an uneven sampling distribution across the pan-arctic region. Working in an understudied region of the Arctic, this project aims to improve our understanding of the quantities and controls on soil C. Specifically, we combined soil C data for three vegetation types, polar desert, mesic tundra, and wet meadow, with a vegetation classification to upscale soil C stocks on South Baffin Island. The uploaded dataset contains two sets of paired files. 1) Metadata and geochemistry files to report soil biogeochemical data from 51 soil cores collected on South Baffin Island in July, 2022. 2) A record of the code and dataset used to generate a vegetation classification and soil C upscaling estimate for the study region.more » « less
-
Abstract The time scale of channel recovery from disturbances indicates fluvial resiliency. Quantitative predictions of channel recovery are hampered by multiple possible recovery pathways and stable states and limited long-term observations that provide benchmarks for testing proposed metrics. We take advantage of annual channel-change measurements following Tropical Storm Irene’s 2011 landfall in New England (eastern USA) to document geomorphic recovery processes and pathways toward equilibrium. A covariate metric demonstrates that channels can adjust rapidly to ongoing boundary condition shifts, but that they adjust along a continuum of possible stable states. Moreover, the covariate equilibrium metric indicates sensitivity to warm-season high discharges that, in this region, are increasing in frequency. These data also show that the channels are resilient in that they are able to recover an equilibrium form within 1–2 yr of disturbances.more » « less
-
Abstract Landscape form represents the cumulative effects of de‐stabilizing events relative to recovery processes. Most geomorphic research has focused on the role of episodic rare events on landscape form with less attention paid to the role and persistence of chronic inputs. To better establish the interplay between chronic and episodic extreme events at regional scales, we used aerial photography and post‐flood sediment sampling to assess stream and hillslope response and recovery to a 100–300 yr. flood caused by Tropical Storm Irene in New England. Within a 14 000 km2study area, analysis of aerial photographs indicated that the storm initiated (n = 534) and reactivated (n = 460) a large number of landslides. These landslides dramatically increased overall estimates of regional erosion rates (from 0.0023 mm/yr. without Irene to 0.0072 mm/yr. with Irene). Similarly, Irene‐generated LWD inputs of 0.25–0.5 trees/km exceeded annual background rates in a single event, and these concentrated inputs (101–102of trees/landslide) are likely to result in large jams and snags that are particularly persistent and geomorphically effective. Finally, we found that landslide scars continue to provide elevated sediment inputs years after the event, as evidenced by sustained higher suspended sediment concentrations in streams with Irene‐generated landslides. Overall, our results indicate that infrequent, high‐magnitude events have a more important geomorphic role in tectonically stable, more moderate‐relief systems than has been previously recognized. Understanding the role of these events has particular relevance in regions such as New England, where the frequency and magnitude of extreme storms is expected to increase. Further, these effects may force reconsideration of conservation and restoration targets (for example in channel form and large wood loading and distribution) in fluvial systems. Copyright © 2016 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
